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Abstract. The complexity of most surgical models has not allowed axtgve
simulations on standard computers. We propose a new frarkgadinely con-
trol the resolution of the models. This allows us to dynarifijceoncentrate the
computational force where it is most needed.

Given the segmented scan of an object to simulate, we firspuotera bounding
box and then recursively subdivide it where needed. The oéthis octree struc-
ture are labelled with mechanical properties based on mabparameters and fill
rate. An efficient physical simulation is then performedngshierarchical hex-
aedral finite elements. The object surface can be used fderewy and to apply
boundary conditions.

Compared with traditional finite element approaches, outhoe dramatically
simplifies the task of volume meshing in order to facilitéte using of patient
specific models, and increases the propagation of the dafmns.

1 Introduction
1.1 Context

Soft body simulation is a growing research domain, for comities such as Computer
Aided Surgery, Virtual Reality or Computer Graphics. Corgolaided surgery (CAS)
aims at assisting surgeons for the realization of diago@std therapeutic gestures in
a rational and quantitative way in order to increase safatyaccuracy [1]. While the
first designed systems focused on orthopaedics, researalldressed more recently
anatomical structures that cannot be considered as "ragdhey are mainly composed
of biological soft tissues. The corresponding CAS systdmsefore need to take into
account the displacements of the structures as well asda&irmations. In most cases,
authors propose to build biomechanical models of the anatdrstructures and use
these models to predict, in the most accurate way, the tdst@mations induced by
the surgical gesture.

Virtual Reality (VR), in its interactions with the Medicabmmunity, has recently pro-
vided surgical simulation systems (Cotin et al., 1996). éwthie flight simulators used
to train pilots, the idea is that these surgical VR systemdd:be a great help in the
learning and training processes, allowing the surgeon tpiee, for example, some
difficult hand-eye coordinations, to repeat several tinesrhost difficult gestures or
to choose the best surgical procedure for a given pathabgese. As for the CAS
systems, deformable models have been included into thdations, with constraints in
term of robustness and computation times.

Computer Graphics (CG) has developped methods for the llyiqulausible animation
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of complex physical objects such as clothes and hairs. Qerathle speedups have been
obtained for stiff flexible bodies using implicit time integion, which allows arbitrary
time steps to be performed. Significant advances have atsoiibade using hierarchi-
cal modeling and the control of levels of detalil.

These three communities now converge towards the same,rieg¢dems of soft body
modelling: accuracy, robustness and interactiviity. fast computation times). Indeed,
from one side the CAS community is now looking for models ttwtld be per-operatively
used, with possible real-time re-planning of the surgiedtgre. From the other side,
the VR and CG communities now focus on the accuracy of thergeftions, in order
to be as realistic as possible, in comparison with real data.

In this framework, some recent works, coming from these comities, try to provide
mechanical models with innovative implementations thasprve a continuous mod-
elling context (with, for most of the works, a numerical regmn through the Finite
Element Method) while proposing improvements, in termsatfustness and compu-
tation times. In addition, models built in the CAS or VR cofiteneed to be adapted
to each patient anatomy. This point is particularly chajieg (and time consuming)
when a patient-specific Finite Element mesh needs to be define

Next part tries to summarize all of these recent works (p&), Wvhile a new modelling
approach is introduced in part 2. An example of implemeatsis presented in part 3
before providing some results (part 4).

1.2 Related Work

In order to improve the computational efficiency of continediomechanical mod-
els, researchers have proposed new approaches concethiihg Finite Element dis-
cretization, (2) the dynamical integration and (3) the nrioa resolution methods.
Because of the need for speed, the first interactive methedskased on precomputed
matrix inversion [2]. To extend these methods to large defdions frameworks, a non-
linear computation of the strains is used in [3, 4]. Receptlyposed methods favor a
new approach based on the decomposition of the displacesheatch element into a
rigid motion and a pure deformation tractable linearly ie thcal frame [5-8]. These
methods allow a large displacements and rotations framewor

In the animation community, implicit integration methods/k become popular, thanks
to the iterative solution based on conjugate gradient piteseby [9]. Although these
methods permit large time step, they become "expensive’veh&ast propagation of
the deformation is suited, since they require a lot of iierat to solve the system ac-
curately. On the contrary, explicit integrations do not iteeations but require small
time steps to maintain stability. Therefore, if a fast prggi@on of the deformations
is needed, both implicit and explicit integration schema®ain computationally ex-
pensive. To face this problem, hierarchical methods haea Ipeoposed, providing an
improvement of the propagation of the deformations (seefample the hierarchical
solvers proposed by [10, 11]).

In order to adapt the numerical solution schemes to the adedevel of details, au-
thors have proposed to adapt the Finite Element (FE) mestrding to the actual
state of the model (in terms of displacement, strain or sjrdey propose therefore a
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multi-resolution FE approach ([12, 3, 13]). The idea is fxaumple to define, for a given
anatomical structure, different FE meshes, from a verysmane to a full refined one.
If boundary conditions induce small deformations inside tructure, the coarse mesh
is sufficient for providing accurate FE discretization. @e tontrary, a dense mesh is
used where the deformation is high. [14] shows how to linkaiedral elements of
different sizes but the octree hierarchy is not used in theadyics computations.

2 Contribution

Our approach proposes to merge a multi-resolution desmniptith a Hierarchical FE
integration. It is supposed to provide a numerical scheraedan be used for any type
of mechanical description, from a small deformation fraragto hyperelasticity. The
objective is only to gather some methods already propos#tkititerature in order to
improve the propagation of the deformations as well as tfiei@ficy of the computa-
tion according to the mechanical and geometrical statee$ttiit body. The specificity
of the method is that a global 3D mesh is defined from a clalssateee division of a
bounding box including the soft body. Therefore, no FE mesheieded to specificaly
model the 2D or 3D geometry of the body. Indeed, the FE contiputaare applied to
the 3D mesh defined by the octree. This octree can be direailtyflom the volumic
data resulting of the segmented patient scan, so it is véigiesft when we have few
time to built a patient specific mesh, for exemple when theepatomes in emergency.
To improve the propagation of the deformations, a hieraalhbasis is defined to in-
terpolate the FE computations, from the global parent edlhed by the bounding box
to each child cell of the octree. A real difficulty is to congingly animate stiff ma-
terials in an interactive context, when only an approxinsatieition can be computed.
Our hierarchical approach gives more realistic resulthis ¢ase. Moreover, the multi-
resolution scheme is used to decide, for a given state of adg, lwhich levels of the
octree should serve as basis for (1) FE computation and (2gB88ering: for example,
only regions with high strains level should use a dense ed#eel for FE computa-
tion, while regions that are not displayed on the screenuscthey are not seen by the
camera should use a coarse octree mesh level for the 3D regder

2.1 Octree Mesh and Multi-resolution

The first step consists in defining the complete 3D octree masgtresented in figure
1-a. Starting from a cubic bounding box of the body, an iteeaalgorithm is used to
divide each "parent” cube in order to generate eight "chddbes. The cubes that do not
contain any part of the body are removed from the octree niEsh remaining cubes
are again divided, so that each of them will generate 8 nevexub maximal level of
division Nmax is defined once, leading to the "maximal density” octree n{éghre 1-
a). Using this octree mesh architecture as a baseline, tiwomediate resolutions will
be defined at each time step of the global computation of thesy, namely the octree
resolutionNgg used for the FE mesh interpolation (figure 1-b) and the octrselution
Nreng Used for the rendering display (figure 1-c). These two régois can change
during the solving of the system, according to the changélserboundary conditions
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as well as the location of the camera that looks at the sceme&xample, one condition
to define whether a given level of the octree mesh is suitairl@ fgiven point of the
body consists in looking at the strain rate. If it is suffidigriow, this means that the
current resolution is sufficient. On the contrary, if a higtas variation is observed, a
denser mesh is preferable around this region of the bodyrigad the use of the child
cells of the actual octree element. Once Mg level is reached, the corresponding
octree 3D mesh is used for the FE computation. In order td ling influence of cells
that would contain a small amount of the body (cells locatedesurface of the body),
it is proposed to ponderate the rheology of these cells by filimg ratio as illustrated

in figure 4.
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Figurel. An exemple of adaptativity. (a) leaves of the octree meshe=fitiest level of details.
(b) mechanical leaves = the finest mechanical level. (c) gdacrieaves = the finest geometric
level.

2.2 Hierarchical FE Bases

A function decomposed in a hierarchical basis is modeledguairough approxima-
tion based on a few broad-range sample points, along withnabeu of recursively
narrower-range sample points encoding local detail addede approximation. Each
value of the function is thus the sum of shape functions wétious radius of influ-
ence. This approach allows one to easily control the leveletdil by simply inserting
or dropping control values where desired [15]. Another rieagure of this approach is
to considerably speed up the convergence of shape optiorizas shown in geometric
modeling [16]. It has been successfully applied to finiteredat methods [17, 18].

In the case of the octree mesh introduced above, the positiwad for each vertex is
relative from its parents position. Therefore, only vezidrom the root celli(e. the
cubic bounding box that includes the body) have real pasitidhe 3D space. At start,
all others child cells have a null relative position whicHyodepends on their parents.
Figure 2 illustrates the FE interpolation that will be prde@d with hierarchical linear
functions.

3 AnImplementation

This section proposes an example of the implementationeptiviously presented
hierarchical approach. This implementation uses the Gasideformation tensor with
a co-rotational handeling of large displacements [5—8]amiscoelastic material.
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Figure2. lllustrations of the finite element (top-left), basis fuioct (top-right) and hierarchical
basis function (bottom) points of view with linear interptibn. In the basis function point of
view, the solution corresponds to a combinaison of funatiassociated with the nodes. In the
hierarchical point of view, the influence support of thesections varies.

3.1 Largedisplacements

To handle rotational displacements, each detal ierarchical value) has to be rep-
resented in a local frame that follows the rotation as showdigjure 3. In this way, a
local frame is attached at each cell, and each node is defirthd iocal frame of a cell.
The corresponding cell of a node is determined in taking tiieeft cell that contains
all the incident cells to the node as represented in the figeight. To compute cell
rotations, the eigenvectors are used as explain in [5] bgposing the matrix formed
with the egdes averages in the three directions.

N

Figure3. By taking into account the local frame of the cell, the hierécal values are invariant
in rotation.

3.2 Mechanics

The standard method used to simulate viscoelastic solidsrisidered, equations and
notations can be found in [19].

Our approach induces differences with classical formafationcerning the displace-
mentu which is not defined in global space coordinates, but is défirerarchically.
Only displacements of the vertices of the root cell are incepeoordinates. The dis-
placement of others vertices is relative from their parehtsbuild the mass matriki
and the stiffness matrik, not only finest elements are considered. Indeed, for each
elements along the hierarchy we take into account all nagadtfons that influence
the considered element as exprimed in algorithms 1 ar@ i8.the stress-strain ma-
trix relating the material properties and the strain-dasgiment matriXB; is obtained
by differentiation of interpolation functionis; with respect to natural coordinate and
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premultiplying the result by the inverse of the Jacobianrafme. H; is a matrix of the
interpolation function;.

Algorithm 1 BuiLD MATRICESK AND M
for each cell do

for each vertexi defined at level o€ell do
INTEGRATE(B;, Bi,Hi,Hi,Ccdl, Jcal)
for each vertexj # i defined at level otell do
INTEGRATE(B;, Bj,Hi,Hj,Ceell, Jcall)
end for
for each ancestor of cell do
for each vertexj defined at level oncestor do
take functionh;j between range afell in ancestor // detail in section ??
INTEGRATE(B;, Bj,Hi,Hj,Ceell, Jcall)
INTEGRATE(Bj,Bi,Hj,Hi,Ccal,Jcel)
end for
end for
end for
end for

/I Note that some computations can be omitted in considering the symetric aspect of matrices
Kand M: Ki j = K]; and M j = M];

Algorithm 2 INTEGRATE(B;, Bj,Hi,Hj,C,J)

1 1 1
Ki_,-:/ // BT CB; detJ dr dsdt
’ —1Jo1)

1 r1 (1
Mi,,-:/ // HTH; detd dr dsdt
’ —1J-1J

4 Results

Figure 4 shows an octree mesh for a liver model.
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Figure4. An octree-mesh for a liver: densities of mechanical leave#hie finnest level of details
and for a multiresolution mesh.
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Table 1 compares the number of iterations necessary to ogpave the equilibrium
with a static solver using the nodal approack. (the classical non-hierarchical one)
against the hierarchical approach. Two examples are ceresidor several numbers
of elements, the first one consists in a cubic fixed beam sutgegravity, while in
the second a force is applied to a corner of the beam. As exggttie convergence is
faster using the hierarchical approach. When the corneulisqgh the other end moves
directly, whereas in the nodal model it is necessary to pgapathe deformation along
all elements.

Number of elements 1| 8 | 64512
example 1 nodal 1| 13| 55| 146
(gravity) hierarchical 1| 11| 27| 47
example 2 nodal 8| 50| 87| 198
(boundary force) |hierarchical 6 | 24| 37| 52
Table 1. Number of CG iterations of the static solver until convergggnon two examples on a

cubical fixed beam.

This faster propagation is useful in case of real-time satioh when only few itera-
tions can be performed on the implicit integration at eaep stysing hierarchy, a small
number of iterations (approximately ten) provides a muchigraxcurate result, as il-
lustrated in figure 5 that plots the convergence speed ofdbersl example of table 1.
In case of very soft materials, fast propagation can be listiealn this case a classical
nodal approach can be better suitable.
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Figureb. Convergence speed in a static solver.

5 Conclusion

We proposed in this paper a hierarchical multiresolutiahtégue to animate soft bo-
bies. This new approach based on a octree mesh permits tconadrious geometrical
representations of an object without needing to providelametric mesh of this ob-
ject. Using the hierarchical approach improves the propagand permits to simulate
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more rigid materials. Despite it, we do not yet obtain betsults in terms of computa-
tion time because an optimized structure is difficult to getlo make this work usable,
it will be necessary to integrate criteria of adaptivity t@matic definition ofNrg and
Nreng Values), and to take into account effective boundary caortt
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