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Goal
Motivation Contributions
Motion capture data are big, yet show a high degree of temporal and
spatial coherence . We exploit these for compression purposes by build-
ing a model of the joints’ orientations. This pose model is used in an
inverse kinematics algorithm to recover poses from end-effectors posi-
tions.

• An efficient, lossy compression technique for motion capture data
• An interactive, data-driven Inverse Kinematics algorithm
• A compact and easily editable motion representation

Principal Geodesics Analysis
Principal Geodesics Analysis (PGA, [FLJ03]) extends Principal Compo-
nent Analysis (PCA) for more abstract manifolds, such as the rotations
space SO(3)

• The data are projected onto geodesics rather than straight lines

• The data are then recovered by “flowing” over each geodesic using
the exponential map, starting at the intrinsic mean of the data:
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j=k

∏
j=1

et j .v j

PGA may be approximated by a PCA in the tangent space at the intrinsic
mean of the data µ.

PGA-based Inverse Kinematics
Motion modes
From one motion, we compute k principal geodesics out of the joints ori-
entation data. These motion modes provide a reduced pose parametrization
of the input motion.

Data-driven Inverse Kinematics
We optimize the geodesic coefficients to match end-effectors constraints
in order to perform inverse kinematics (IK). The resulting poses are com-
posed of motion modes extracted using PGA, thus exhibit the correla-
tions present in the input motion.

Poses recovery
Given k geodesics, we recover poses using only the end-effectors’ posi-
tions⇒ compression

Compression Pipeline
Using the PGA-based IK, we recover each frame from the end-effectors
positions. We exploit temporal coherence in the end-effectors’ position by
compressing them with spline interpolation.
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Results
+ High compression rates with few visual distortion (d = 100 ‖A−Ã‖

‖A−E(A)‖ )

+ Easily editable motion representation

− Decompression is slower than other techniques (yet realtime)
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