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Abstract—Triangular Bézier patches are an important tool for defining smooth surfaces over arbitrary triangular meshes. The

previously introduced 4-split method interpolates the vertices of a 2-manifold triangle mesh by a set of tangent plane continuous

triangular Bézier patches of degree five. The resulting surface has an explicit closed form representation and is defined locally. In this

paper, we introduce a new method for visually smooth interpolation of arbitrary triangle meshes based on a regular 4-split of the

domain triangles. Ensuring tangent plane continuity of the surface is not enough for producing an overall fair shape. Interpolation of

irregular control-polygons, be that in 1D or in 2D, often yields unwanted undulations. Note that this undulation problem is not particular

to parametric interpolation, but also occurs with interpolatory subdivision surfaces. Our new method avoids unwanted undulations by

relaxing the constraint of the first derivatives at the input mesh vertices: The tangent directions of the boundary curves at the mesh

vertices are now completely free. Irregular triangulations can be handled much better in the sense that unwanted undulations due to

flat triangles in the mesh are now avoided.

Index Terms—Triangulation, irregular 3D meshes, arbitrary topology, modeling, surfaces, triangular patches, piecewise polynomial

patches, interpolation, arbitrary tangent vectors, reconstruction.
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1 INTRODUCTION

THE easiest way of modeling free-form surfaces is to use
tensor-product Bézier/BSpline or NURBS patches.

Tensor-product Nurbs patches have long ago become a
de facto standard in the CAD/CAM industry. But, tensor-
product patches are able to model only a very restricted
type of surface, those for which the topological type is the
same as that of a square. Unfortunately, 2-manifold surfaces
with arbitrary topological type are very common in every-
day life. For example, a cup of coffee has the topological
type of a torus. Modeling the skin of a cup of coffee as a
single smooth surface is not an easy task. If you are
restricted to tensor-product patches, most probably you
would use two pieces: one for the container and one for the
handle. You would then trim the container along the joint
between the two pieces. You would carefully modify the
control points of the handle in order to blend the two pieces
as smoothly as possible. Trimming is the common method
used for modeling surfaces of arbitrary topological type
with tensor-product patches. But, dealing with trimmed
models is rather cumbersome. These reasons explain why
researchers have tried to develop mathematical models that
can deal with control-polygons of arbitrary topological
type, not only tensor-product control-polygons.

Two different research directions have been pursued.
One is based on subdivision surfaces that recursively
subdivide the control-mesh. The other direction consists

of building a patchwork of smoothly joined parametric
patches, with the same topology as the control-polygon. The
present paper deals with this last kind of surface. Not
surprisingly, the two directions have encountered the same
main difficulty: dealing with the smoothness of the surface.
Here, we ensure tangent-plane continuity of the resulting
surface. Our method builds a network of triangular Bézier
patches that interpolates a given 2-manifold triangular mesh
with arbitrary topological type. Interpolation is a very
useful and intuitive feature in modeling. But, unfortunately,
it is also quite tricky to find smooth curves or surfaces that
interpolate a given control-polygon. In particular, if the
control-polygon has nonregular features, one small edge
joined to a long edge in the 1D case, or one very flat triangle
joined with a big triangle in the 2D case, then, most
probably, the interpolating curve or surface will suffer from
severe undulations in this area. Note that this problem is
not particular to the parametric methods. The methods
based on subdivision surfaces have exactly the same
problem when it comes to interpolating control-polygons.

In this paper, we introduce a new interpolation method
that avoids undulations, even when interpolating irregular
triangulations. Each input triangle is regularly subdivided
into four subtriangles and one degree 5 Bézier patch is
associated to each of the subtriangles. These four Bézier
patches are referred to as a macropatch. Inside a macro-
patch, the four Bézier patches are connected with C1

continuity. The macropatches are themselves connected
with G1 continuity. The key difference with our previously
introduced 4-split [12] method lies in the fact that our new
interpolant allows free choice of all first derivatives at each
input vertex, along each input edge. Whereas the previous
method was restricted to having first derivatives that form
an affine transformation of a regular n-gone, this new
method does not impose any constraint on the first
derivatives. This allows us to avoid any unwanted undula-
tions when interpolating irregular triangulations.
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The paper is organized as follows: After some notations
and some basics about tangent plane continuity, the
presentation of previous related works will then outline
the main difference to our method which we believe is able
to increase the general quality of such interpolating spline
surfaces. Then, the description of the algorithm starts
(Section 3), which is mainly composed of three steps. The
first two steps (Sections 3.2-3.4) are coupled. They consist of
constructing a curve network interpolating the mesh
vertices and of constructing the tangent ribbons along that
curves in order to satisfy the G1 conditions between
adjacent patches. Step 3 (Section 3.5) finally counts the
remaining Bézier control points of the patches and explains
how to calculate them. We then go into detail of some
design and computational aspects (Section 4) of that
method. Section 5 will present results and compare them
to earlier works. The concluding remarks finally indicate
some directions for further research.

2 BASICS AND RELATED WORKS

2.1 Notations

The problem we address is to find a parametric polynomial
surface which interpolates a given triangulated surface
mesh M with tangent plane continuity. The triangle mesh
can be of arbitrary topology, but should be 2-manifold. There
is no restriction on the valence of its vertices. It can be an open
or a closed mesh. The requirements on the surface are to:

. be polynomial of as low degree as possible,

. interpolate the mesh vertices,

. be defined locally, and

. be smooth in the sense of having a pleasing shape.

The smoothness requirement is a global one and it
conflicts therefore with a local definition of the surface. We
therefore try to get an overall well-shaped surface only by
doing local operations.

The general procedure consists of constructing parametric
patches in one-to-one correspondence to the mesh faces. Each
patch boundary curve corresponds to an edge of M and
interpolates both end points. Each patch is, in our case, a
polynomial image of the unit domain triangle. The poly-
nomial patches and curves are represented in Bernstein-
Bézier basis. A curve of degreenwith control-points bb0; � � � ; bbn
has the parametric equation BðtÞ ¼

Pn
i¼0 bbit

ið1ÿ tÞnÿi. A

triangular patch of degree nwith control-points bbði;j;kÞ;iþjþk¼n
has the parametric equation

Sðs; tÞ ¼
X

ði;j;kÞ;iþjþk¼n
bbði;j;kÞs

itjð1ÿ sÿ tÞk:

The patches of the surface we aim to construct are defined
locally around the vertices which they interpolate. We adopt
therefore the following parameterization: Let us consider a
mesh vertex, pp 2 IR3, and its neighborhood points, pp1; . . . ; ppn,
ordered in a trigonometric sense. The integer n is called the
valence of pp. The patches around the vertex are numberedS1 to
Sn. Letui 2 ½0; 1� be the parameter corresponding to the curve
between pp and ppi, the patch Si is then parametrized as shown
in Fig. 1. In the following, we denote ÿiðuiÞ the patch boundary
curve joining pp to ppi

ÿiðuiÞ :¼ Siðui; 0Þ ¼ Siÿ1ð0; uiÞ ui 2 ½0; 1�:

2.2 Tangent Plane Continuity

We require our interpolating surface to be tangent plane,
e.g., G1-continuous. Tangent plane continuity doesn’t
depend on parameterization as C1 continuity does. Tangent
plane continuity is the mostly used definition of first order
continuity for free-form parametric surfaces in CAGD. In
addition to being parameter-independent, it also allows
more free parameters in comparison to the C1 continuity.

The surface should be G1 continuous which means to
have continuously varying tangent planes between the
patches. The G1 conditions are at the origin of every step in
the surface construction algorithm. They have to be satisfied
between adjacent patches and at the mesh vertices where an
arbitrary number of patches meet. They therefore have to be
satisfied by the boundary curves at the mesh vertices and
by the cross-boundary tangents.

Let Si and Siÿ1 be two adjacent patches sharing a
common boundary curve ÿiðuiÞ. They meet with tangent
plane continuity if there exist three scalar functions �i, �i, �i
such that

�iðuiÞ
@Si

@ui
ðui; 0Þ ¼ �iðuiÞ

@Si

@uiþ1
ðui; 0Þ þ �iðuiÞ

@Siÿ1

@uiÿ1
ð0; uiÞ;

ð1Þ

where �iðuiÞ�iðuiÞ > 0 (preservation of orientation) and
@Si

@uiþ1
ðui; 0Þ � @Siÿ1

@uiÿ1
ð0; uiÞ 6¼ 0 (well-defined normal vectors).

This formula means that the three partial derivatives along

the boundary curve ÿi are always coplanar, see Fig. 2.

100 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003

Fig. 1. Parameterization.

Fig. 2. Tangent plane continuity.



The goal is now to determine, for each mesh vertex of
valence n, the scalar valued functions �i, �i, �i and the
patches Si, i ¼ 1; . . . ; n. Of course, there are an infinite
number of solutions. We require the patches to be
polynomial with all the advantages they have with respect
to rational patches. Also, we require them to be of minimal
possible degree and to be defined explicitly and locally,
meaning that we don’t want to have to solve any global
linear system in order to compute them.

2.3 Related Works

The earliest interpolation schemes are due to Piper [22],
Shirman and Séquin [24], and some others [14], [17] which
are all based on the same idea using a Clough-Tocher
domain split. The initial work to that can be found in [6].
They all apply to arbitrary triangle meshes and result in
three polynomial patches of degree four per mesh face. The
problem of polynomial G1 interpolation is that the surfaces
have to be twist compatible at the vertices. The problem is
solved by splitting the domain triangle Clough-Tocher-like
into three triangles by introducing a new point at the
interior. Due to the very low degree, only a few degrees of
freedom are available for shape control. This can be the
reason for what Mann et al. found out in their survey paper
[17]. They compared polynomial and rational triangular
interpolation schemes and conclude that all of them suffer
from shape defects.

Then, Loop [15] developed another polynomial scheme
which results in only one patch for a mesh face. Its low
degree six is obtained by choosing a special setting for the
scalar functions �i, �i, �i in (1), namely:

Loop094 : �i function of degree 2
�i ¼ �i � 1

2 ;

in order to solve the twist problem. This particular choice
entirely fixes the patch boundary curves up to a scalar
degree of freedom per vertex. He obtains, however, quite
fair surfaces by relaxing the interpolation condition. It
therefore does not really belong to the class of schemes we
consider here, but the way he solved the twist problem
motivated our work.

A third type of methods is the basic 4-split method [12].

Hahmann=Bonneau000 : �i piecewise function of degree 1
�i ¼ �i � 1

2 :

By taking Loop’s low degree setting for the scalar functions,
�i, �i, and by lowering the degree of �i by one and by
introducing piecewise polynomial boundary curves and
cross-boundary tangents, we obtained enough degrees of
freedom for the curve network construction. The four
patches (due to the domain triangle 4-split) are of degree
five and interpolate the mesh vertices.

It turns out that this particular setting of �i ¼ �i ¼ const
can lead to “misbehavior” of the surface, to unpleasant
shapes if the input mesh contains irregularities. Irregula-
rities mean, for example, that very short and very long
edges meet at the same vertex or that small flat triangles are
joint to more equiangular triangles. All these situations in
an input mesh make it extremely difficult to find an
interpolating smooth surface. The same problem also occurs

for interpolatory subdivision surfaces; they are also not able
to result in a fair interpolating surface in that case.

One solution to that problem can consist of a kind of

preprocessing step of the input mesh by trying to optimize
the mesh with respect to one well-chosen cost function.

However, in this case, interpolation doesn’t make sense
anymore.

What we want to develop in the present paper is a new

mesh interpolation method which allows for arbitrary values

of the scalar functions around a vertex, while maintaining, at
the same time, the interpolation scheme polynomial of

degree five. The functions will be linear. What the
difference between using constant or arbitrary linear

functions really is will be explained in detail in the
following section.

Other triangular interpolants exist including the convex

combination schemes [8], [9], [11], [19], boundary curve
schemes [21], algebraic methods [2], singular parameteriza-

tion [18], quasi G1 surfaces [16], and methods for meshes
with restricted vertex valences [25].

3 THE G1 INTERPOLATION SCHEME

The algorithm of the present method consists mainly of

three constructive steps:

1. boundary curve network,
2. cross-boundary tangents,
3. fill-in patches.

The first two steps are linked together because of the
G1 conditions. First, we examine in detail the G1 conditions

at a mesh vertex. We get first and second derivatives of the
patch boundary curves at the vertices. These data are then

used to find a curve network interpolating these data and
which is therefore G1 compatible.

3.1 Tangent Plane Continuity at Mesh Vertices

The tangent plane continuity conditions at a mesh vertex of

valence n consist of the n equations (1) between the n patches
meeting at that vertex evaluated at the parameters ui ¼ 0:

�ið0Þ ÿ0ið0Þ ¼ �ið0Þ ÿ0iþ1ð0Þ þ �ið0Þ ÿ0iÿ1ð0Þ; i ¼ 1; . . . ; n:

ð2Þ

The indices are taken modulo n. It turns out that, at the
vertex, the three partial derivatives in (1) are identical to the

first derivatives of the three boundary curves ÿiÿ1, ÿi, and
ÿiþ1, see Fig. 3.
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Fig. 3. Tangent plane continuity at mesh vertex.



Equation (2) therefore relates the values of the scalar

functions around a vertex to the first derivatives of the

boundary curves. From the general G1 condition, we

already know that the degree of the patches is related to

the degree of the scalar functions. If one wants to get

patches of as low degree as possible, one has to keep the

degree of these functions as low as possible. This was done

in [15], [12], where �i ¼ �i ¼ const. It was shown in these

papers that, in the case of �i ¼ �i ¼ const, the first

derivatives in terms of Bézier control points always form

an affine transformation of a regular planar n-gon. This

leads to very restricted positions of the derivative vectors

around a vertex. There is not enough freedom for choosing

the derivatives of the curves at the vertex. Indeed, in order

to get smooth surfaces it is very important first to build

smooth boundary curves, as was pointed out by Mann et al.

in [17], and, hence, to be able to choose the first derivatives

with as most freedom as possible. Fig. 4 (left) shows a top-

view zoom on the real example given later in Figs. 14, 15,

and 16 (right), centered on the order six vertex. The tangents

corresponding to �i ¼ �i � const are shown in Fig. 4 (right).

Because of the restriction on their choice, these tangents

lead to boundary curves with undulations and, thus, to

unpleasant shapes, as can been seen in Fig. 15 (right). On

the contrary, our new method enables to choose arbitrary

tangents, as shown in Fig. 4 (middle) and, thus, to remove

boundary curve undulations, as shown in Fig. 16 (right).
Conclusion. The setting of �i ¼ �i � const doesn’t allow

for an arbitrary choice of the boundary curve’s derivatives

at the mesh vertices. However, it works well if the input

mesh is almost regular in the sense of almost equiangular

triangles. A preprocessing mesh optimization would make

sense if interpolation of the control mesh is not required.

3.2 Collecting Data Ensuring G1 Continuity at
Mesh Vertices

Tangents. For simplification, let us first introduce the

following notation for the tangents (first derivatives) of the

boundary curves at a mesh vertex:

dd1
i :¼ ÿ0ið0Þ ¼

@Si

@ui
ð0; 0Þ:

Let us now explain how to determine the quantities which

are related by (2), namely, �ið0Þ, �ið0Þ, �ið0Þ and the curve’s

tangents dd1
i , i ¼ 1; . . . ; n.

If one multiplies (cross product) for each index i the

G1 equation �ið0Þdd1
i ÿ �ið0Þdd1

iþ1 ÿ �ið0Þdd1
iÿ1 ¼ 0 by the vec-

tors dd1
iÿ1; dd

1
i ; dd

1
iþ1, resp., one gets three vector valued

equations which are then multiplied (dot product) each by

the vector nn (normal to the dd1
i ), one gets a ð3� 3Þ linear

system of equations of rank 2. Doing so for each index i, one

gets the following formulas

�ið0Þ ¼
jddi; ddiþ1; nnj
jddiÿ1; ddiþ1; nnj

�ið0Þ ;

�ið0Þ ¼
jddiÿ1; ddi; nnj
jddiÿ1; ddiþ1; nnj

�ið0Þ; i ¼ 1; . . . ; n:

ð3Þ

The tangents of the boundary curves can therefore be

chosen arbitrarily in length and direction as long as they

belong to the same plane, namely the tangent plane. Then,

the scalar values �ið0Þ and �ið0Þ are also fixed up to a scalar

factor �ið0Þ by (3). Similar formulas have been developed

by Du and Schmitt in [4], but his G1 surface is then

composed of rational patches.
In practice, we choose the normalization factor �ið0Þ

such that �ið0Þ � �ið0Þ ¼ 1
4 . This choice is motivated by the

need of a normalization that generalizes the regular case

where �ið0Þ ¼ �ið0Þ ¼ 1=2. And, it will simplify the compu-

tation of the boundary curves where this product occurs??.
Fig. 4 (left) shows a zoom on a real example of a vertex

with six common edges. An arbitrary choice of the curves’

tangents leads to the Bézier control points of the boundary

curves, as shown in Fig. 4 (middle). They are obtained by

the new method which is described in Section 4. The

tangent control points corresponding to constant scalar

functions, �ið0Þ ¼ �ið0Þ � 1
2 , are shown in Fig. 4 (right). The

edges in the background show the deviation in that case.
Geometrical Interpretation. Formula (3) has the follow-

ing geometrical meaning: For each triple of tangents fdd1
iÿ1,

dd1
i , dd

1
iþ1g, the value of �ið0Þ is proportional to the area of the

triangle �ðpp; ppþ dd1
i ; ppþ dd1

iþ1Þ and �ið0Þ is proportional to

the area of the triangle �ðpp; ppþ dd1
iÿ1; ppþ dd1

i Þ, see Fig. 5.
Scalar Functions. Once the values (3) are determined for

each mesh vertex, the scalar functions can be taken
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Fig. 4. Left: Zoom on a 3D vertex configuration with six common edges. Middle: Arbitrary tangents at mesh vertex. The vertex together with the

curves’ Bézier control points build the polygons. Right: Tangent Bézier control points corresponding to a constant value of the scalar functions, in

particular, �ið0Þ ¼ �ið0Þ � 1
2 .



(piecewise) linear along the domain triangle edges where

they are defined on:

ðpiecewiseÞ linear functions : �i; �i;�i : ½0; 1� ! IR:

Twists. The second derivatives of the patch boundary

curves are also involved when establishing G1 continuity at

a mesh vertex. This can be seen when differentiating (1)

with respect to ui and evaluating it at ui ¼ 0, i ¼ 1; . . . ; n.

One obtains the following necessary system of conditions of

G1 continuity at the mesh vertices:

�ið0Þdd2
i ¼ �0ið0Þdd1

iÿ1 ÿ �0ið0Þdd1
i þ �0ið0Þdd1

iþ1

þ �ið0Þttiÿ1 þ �ið0Þtti; i ¼ 1; . . . ; n;
ð4Þ

where dd2
i :¼ ÿ00i ð0Þ ¼ @2Si

@u2
i

ð0; 0Þ denote the second boundary

curves derivatives at the vertex, and tti :¼ @2Si

@ui@uiþ1
ð0; 0Þ denote

the twist vector of patch Si at the vertex. The twists and the

second derivatives are the unknowns in these equations. The

best way to proceed is to choose all the twists tt1; . . . ; ttn and

then simply evaluate the equations separately from each

other in order to get values for the second derivative dd2
i . No

linear system has to be solved for that. How the twists are

chosen will be explained in Section 4.
Conclusion. At each mesh vertex, we now have fixed the

data which is necessary to satisfy G1 continuity there:

. the position (interpolation of mesh vertices),

. the tangents,

. the second derivatives of the patch boundary curves,

. the twists of the patches surrounding that vertex.

One is therefore tempted to believe that a curve network

composed of quintic Hermite curves between two neigh-

boring vertices which interpolates these data could be

chosen. Unfortunately, this would generally lead to rational

patches, as we will explain in the next section.

3.3 Curves and Tangent Ribbons Are Linked

What we call tangent ribbons are the cross-boundary

derivatives along the macropatch boundary curves. They

ensure the G1 continuity between adjacent patches. An

equivalent condition to (1) of G1 continuity is used for their

construction.
Tangent Ribbons. The patches Si and Siÿ1 meet with

G1 continuity along the common boundary if there exist

three scalar functions �i; �i; �i and a vector valued function

in IR3 VV i such that the following two equations hold:

2 �iðuiÞ
@Si

@uiþ1
ðui; 0Þ ¼ �iðuiÞ ÿ0iðuiÞ þ VV iðuiÞ ð5Þ

2 �iðuiÞ
@Siÿ1

@uiÿ1
ð0; uiÞ ¼ �iðuiÞ ÿ0iðuiÞ ÿ VV iðuiÞ: ð6Þ

The equivalence between (5), (6), and (1) can be seen by

adding up (5), (6). From Section 3.2, it is known that �i and

�i are linear functions in order to guarantee an arbitrary

choice of the tangents at the vertices. This implies, however,

that the tangent ribbons @Si

@uiþ1
ðui; 0Þ and @Siÿ1

@uiÿ1
ð0; uiÞ defined

by (5), (6) between Si and Siÿ1 would be, in general,

rational. Therefore, the patches would all be rational in

contradiction to our main requirement: The interpolation

surface must be polynomial.
Boundary Curves. In order to keep in the class of

polynomial patches, the boundary curves ÿi common to a
mesh vertex are chosen such that they satisfy the following
condition: Their derivatives ÿ0iðuiÞ ¼ @Si

@ui
ðui; 0Þ are defined as

a product of the linear scalar functions �i; �i and a vector
valued piecewise polynomial function HHi, i.e.,

ÿ0iðuiÞ :¼ �iðuiÞ � �iðuiÞ �HHiðuiÞ; i ¼ 1; . . . ; n: ð7Þ

The choice (7) is the only possibility that yields a
polynomial solution of (5) and (6). Now, an explicit formula
of the boundary curves can be given by assembling the results
about the tangents and second derivatives at each vertex from
Section 3.2 subject to the polynomial condition (7) between
two neighboring vertices. Each boundary curve is finally a
uniquely defined piecewise G1 quintic Bézier curve ÿiðuiÞ,
ui 2 ½0; 1�, composed of two pieces. The two sets of control
points fbbLk g

5
k¼0 and fbbR5ÿkg

0
k¼5 are shown in Fig. 6.

The control points bbL0 ; bb
L
1 ; bb

L
2 and bbR0 ; bb

R
1 ; bb

R
2 are determined

by interpolating the position, tangent, and second deriva-
tive known at the end points ppk; ppi (mesh vertices).

The function HHi defines the curve’s derivative by (7). It

can be chosen piecewise quadratic. Its Bézier control points

are denoted by hhLk and hhRk , k ¼ 0; 1; 2. hhL0 ; hh
L
1 ; hh

R
0 ; hh

R
1 are

known from bbL0 ; bb
L
1 ; bb

L
2 and bbR0 ; bb

R
1 ; bb

R
2 since the position and

tangent of ÿ0i are already known. A comparison of the

coefficients in (7) together with the two linear conditions

expressing C1 continuity of ÿi at ui ¼ 1=2 determine exactly

the remaining unknowns.
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Fig. 5. Geometrical meaning of scalar functions. The values of

�ið0Þ; �ið0Þ are proportional to the area of the shaded triangles.

Fig. 6. Bézier control points of boundary curves.



3.4 Compatible Tangent Ribbons

The tangent ribbons which guarantee tangent plane
continuity between adjacent patches have to satisfy condi-
tions (5) and (6). The requirements on the unknown

function VV i are twice. VV i has to be compatible with the
polynomial requirement. Therefore, the same multiplying
factor as in the case of the curve derivative (see (7)) is

necessary:

VV iðuiÞ :¼ �iðuiÞ � �iðuiÞ �WWiðuiÞ; ui 2 ½0; 1�: ð8Þ

Second, at the end points (mesh vertices), VV i has to be
compatible with the boundary curve tangents computed
earlier (Section 3.2) since the following relation holds:

@Si

@uiþ1
ð0; 0Þ ¼ dd1

iþ1; i ¼ 1; . . . ; n:

The same relations hold at the opposite vertex; they fix

the values of VV i at the end points, i.e., WWið0Þ, WWið1Þ.
Analogously, the G1 compatible twists computed earlier
(Section 3.2) at each vertex are related to the derivative of VV i

at the end points, i.e., they fix the values of WW 0
ið0Þ, WW 0

ið1Þ.
All data we need for G1 compatible tangent ribbons are

fixed now. WWi can interpolate these data if we choose it as a
piecewise C0 quadratic or a cubic Hermite curve. VV i will

therefore be either piecewise C0 quartic or quintic poly-
nomial. Finally, from (5), (6) together with (8), it follows that
the tangent ribbons will be either a piecewise C0 cubic or a

quartic polynomial. Both possibilities don’t increase the
degree of the patches, which is equal to five because of the
boundary curves. An explicit Bézier representation can be

computed directly from the preceding considerations. See
Fig. 7.

3.5 Constructing Bézier Patches

The third and last step of the algorithm consists of the

construction of the surface patches by determining the

remaining control points. How to choose them and what

kind of conditions they must fulfill are the two questions to

be answered now. Recall that we call the group of four

Bézier patches associated with an input mesh triangle a

macropatch (see Section 1).
It turns out from Section 3.3 that the macropatch

boundary curves are piecewise quintic curves consisting

of two pieces joining with C1 continuity at the parameter

value 1
2 . The underlying parameterization for each macro-

patch is based on a 4-split of the domain triangle, as shown

if Fig. 8.
The macropatches are finally composed of four quintic

triangular Bézier patches. From Sections 3.3 and 3.4, we

know the coordinates of all the boundary and the first inner

row of control points, see black dots in Fig. 9 (left). These

data guarantee a G1 joint between all macropatches.

However, the remaining 15 inner control points of each

macropatch are not free because the joints between these

four inner patches also need to be tangent plane continuous.

In [7], it is shown that two triangular Bézier patches of the

same degree join with C1 continuity along their common

boundary if all pairs of subtriangles (subsets of four control

points) across the common boundary are coplanar and are

an affine map of the domain triangles. In the present

method, the patches are defined on the unit triangle, which

implies that each pair of subtriangles of control points must

be a parallelogram, see Fig. 9 (right). Since this linear

parallelogram equation already holds at the boundary edge

midpoints, the remaining 15 inner control points are finally

related across the inner boundaries by nine linear parallelo-

gram equations. Therefore, six inner control points remain

free for shape control.
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Fig. 7. G1 compatible tangent ribbons at end points.

Fig. 8. Four-split parameterization of the macropatches.

Fig. 9. Left: Schematic representation of macropatch control points that ensure the G1 joint between all macropatches. Right: C1 conditions for inner

control points.



4 DESIGN ISSUES

Interpolation of arbitrary triangle meshes with the present
method based on an arbitrary choice of the curve network
offers a lot of degrees of freedom. They are welcome for
shape control as well as for modeling complex shapes. Let
us enumerate these degrees of freedom. For each mesh
vertex of order n, there is one control point, there are
n tangents, and n twists which are free. Then, for each
macropatch corresponding to a mesh face, there are six
control points free. These degrees of freedom have two
main advantages: First, almost all of them offer an intuitive
geometrical way to fix them. Second, they are numerous
enough to allow construction of globally smooth surfaces.

Some Rules for Fixing the Degrees of Freedom. It is
obvious that one input mesh can have quite different
interpolating surfaces. Ideally, the surface can be seen as an
enveloping skin of the mesh vertices which is more or less
tight. This is equivalent to saying that one wants a globally
smooth surface. From the survey of Mann et al. [17], it is
known that the global smoothness is the most difficult
challenge for all mesh interpolation schemes. Other
particular design features, like flat points, sharp points, or
corners, can, of course, be obtained by acting locally on the
degrees of freedom. In Figs. 10 and 11, from left to right,
three surfaces are shown which all interpolate the same
input mesh (Figs. 10 (right)).

All the degrees of freedom listed above can be set up by
using some heuristic, but geometrically-based, rules such
that the resulting surface generally suffices the user.

. For each mesh vertex, there is a theoretical free
point, corresponding to the patch corners and the
boundary curve’s end points. It is set up equal to the
mesh vertex in order to make the surface interpolat-
ing the mesh. However, it is always possible to fix
them otherwise.

. At each vertex of valence n, there are n tangents free

to choose. Together with the second derivatives, they

entirely determine the boundary curves coming in to

that vertex. The curve network which is interpolated

by the patches is the most important step toward a

globally smooth and well-pleasing surface. Since the

curves are constructed in correspondence to the

mesh edges, we choose the following geometrically

intuitive rule to fix the tangent: As tangent vector for

the edge between the vertex pp and ppi take the unit
vector in the intersection of the tangent plane at pp

and the plane spanned by the edge and the normal

vector at ppi and which is scaled by an appropriate

factor. The default scaling factor for each tangent is

taken as proposed in [22], i.e., 4
9 kppÿ ppik for a tangent

of a cubic curve. This scaling factor can furthermore

be used as an intuitive design handle, which can

easily be modified in a 3D graphics program. It is
geometrically very intuitive because it governs the

flatness of the surface at the vertices. The surfaces in

Figs. 10 and 11 from left to right are obtained by

simply increasing this scalar factor simultaneously

for all vertices.

. At each vertex, there aren twists free. They determine

entirely the n second derivatives of the boundary

curves around the vertices, see (4). The question of

how to choose twists of polynomial patches has driven

a lot of publications [1], [23], [20], [10], [3]. Zero twists

are always an easy solution, but, in [7], it is shown that

they never lead to satisfactory results. This can be

confirmed in the present case. The lack of an intuitive

heuristic rule for these values leads us to use a linear

least squares minimization in order to choose them.

More specifically, we minimize the following energy

integral, a linearized version of a thin plate’s bending

energy:
R
Suu þ 2Suv þ Svvdudv. All the degrees of

freedom, which are fixed up to now, allow for the

construction of uniquely defined patch boundary

curves and G1 compatible cross boundary tangents

(Sections 3.2-3.4).
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Fig. 10. Three interpolation surfaces—input “cube” mesh.

Fig. 11. Three interpolating surfaces with boundary curves.



. At the interior of each macropatch, there are six

inner control points free for shape control

(Section 3.5). This doesn’t differ from the previously

developed method [12]. We generally use the same

least square energy minimization as for the compu-

tation of the twists. This is explained in more detail

in [13].

5 RESULTS

We begin this section with examples of familiar shapes.

These examples allow some comparison with earlier related

works based on Clough-Tocher splitting because these

works were tested in Mann et al.’s state-of-the-art paper [17]

using similar familiar shapes. The methods using a Clough-

Tocher split [22], [24], [14] have the advantage of yielding

degree four polynomial patches and only three patches per
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Fig. 12. Icosahedron example, from left to right: boundary curves, surface with boundary curves, surface with iso-parametric lines, surface with
isophotos.

Fig. 13. Torus example. From left to right: input mesh, surface with interpolated vertices, zoom with boundary curve’s control polygons.

Fig. 14. Left: regular mesh, right: deformed mesh. Both meshes are shown with flat shading and wire frame; they are open meshes.

Fig. 15. Interpolation with affine map of tangents.

Fig. 16. Interpolation with arbitrary choice of tangents.



macropatch. Together with [21] they also allow for arbitrary
tangents. However, the sphere and torus examples of Figs. 12
and 13, compared with the results shown in Mann et al.’s
paper, clearly show that our method yields better results. We
believe that this is mainly due to the parameterization of the
surface, which is smoother because of the 4-split of the
triangles. This improved behavior of the iso-parametric lines
is illustrated in Fig. 12 in comparison with Fig. 8.8 in [17].

In the rest of this section, we show the results of our new
interpolation method on several triangular meshes with
irregular features, like small and long edges joining at a
common vertex or ”dirty” and equilateral triangles joining
along a common edge. These features are known to cause
unfair surfaces. For each mesh, we compare the results of
our new method with those obtained by the earlier methods
based on a regular n-gone choice of the tangents around the
interpolated vertices.

Fig. 14 shows left a mesh with regular features: It is an
open symmetric mesh with vertices of valence 4, 5, and 6,
the edges common to the central vertex all have the same
length, and all triangles are more or less equiangular. The
right part of Fig. 14 shows the mesh resulting from the
translation of the central vertex. Flat triangles appear and
short edges join to long edges at the central vertex. Fig. 15
shows the interpolating surface of these two meshes with
the previously introduced 4-split method [12]. Each surface

is shown twice: with and without the macropatch boundary
curves. While the surface obtained for the regular mesh is
acceptable (Fig. 15 (left)), the result for the irregular mesh
has an unpleasant shape (Fig. 15 (right)). Note, in particular,
the overshooting undulations of the surface along the short
edges which are joined with the central vertex (Fig. 15
(right)). This behavior is due to the fact that the lengths of
all tangents at the central vertex are the same. They can’t
adapt to the length of the curves. Fig. 16 shows the results
for the new method. For both meshes, the interpolating
surface has a nice shape, unwanted undulations are
avoided.

The next example is a closed mesh with artificially created
heavy irregularities. Fig. 17 shows two different views we
want to focus on. The resulting interpolating surfaces
obtained with the early method, Fig. 18, are then compared
with the results of the new method, Fig. 19. Again, unwanted
undulations are avoided with the new method and globally
fair surfaces are obtained. It is particularly remarkable how
the macropatch boundary curves are able to smoothly follow
the edges because of the free choice of the first derivatives and
the ability to vary their lengths around a vertex. On the
contrary, the regular n-gone choice of the first derivatives in
the old method is clearly the reason why macropatch
boundary curves—and therefore the surface itself—has
unwanted undulations (see Fig. 18).

In comparison to these results, let us also show in Fig. 20
the result obtained with one of the two triangular
interpolatory subdivision surface schemes: the butterfly
subdivision scheme [5]. Again, the shape of the surface is
clearly not acceptable for this input mesh.

Figs. 21 and 22 show the result of our interpolating
scheme on a more complex data set, the mannequin data set
(courtesy of the University of Washington). The right part of
Fig. 21 shows the control-nets of the quintic Bézier patches.
The central patch of each macropatch is colored in red.
Fig. 22 shows two details of the mannequin interpolating
surface, without and with the control-polygon of the
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Fig. 17. Mesh with irregular vertices.

Fig. 19. Interpolation with arbitrary choice of tangents.

Fig. 18. Interpolation with affine map of tangents.



boundary curves. Note again the overall smoothness and
how the boundary curves smoothly follow the edges of the
input mesh. This is possible only because of the free choice
of the first derivatives.

6 CONCLUSION

We have introduced a new method for interpolating
2-manifold triangular meshes with a parametric surface
composed of Bézier patches of degree 5.

While previous similar schemes enforced a regular n-
gone choice of the first derivatives at the interpolated
vertices, this new method allows a completely free choice of
these tangents vectors. We have shown how to derive first
and second derivative information at the interpolated
vertices and across the boundary curves between inter-
polated vertices such that a polynomial interpolant of low
degree can be found. In comparison with previous similar
schemes, this new method allows us to find pleasing

shapes, without unwanted undulations, even if the inter-
polated mesh has nonregular features, e.g., short and long
edges joining at a common vertex or flat and big triangles
joining along a common edge.

Future work will include, in particular, the refinement of

this interpolation scheme. Based on the fact that our method
utilized a regular 4-split of the input triangles, we will show
that our interpolation scheme is refinable: We will prove
that applying our interpolation scheme on a carefully
subdivided triangulation yields the same interpolating

surface, in other words, the interpolation scheme is
invariant under subdivision. We will build a multiresolu-
tion modeling scheme for the design and edition of complex
shapes at different levels of detail.
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